Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In mesophotic coral ecosystems, reef-building corals and their photosynthetic symbionts can survive with less than 1% of surface irradiance. How depth-specialist corals rely upon autotrophically and heterotrophically derived energy sources across the mesophotic zone remains unclear. We analysed the stable carbon (δ13C) and nitrogen (δ15N) isotope values of aLeptoseriscommunity from the ‘Au‘au Channel, Maui, Hawai‘i (65–125 m) including four coral host species living symbiotically with three algal haplotypes. We characterized the isotope values of hosts and symbionts across species and depth to compare trophic strategies. Symbiontδ13C was consistently 0.5‰ higher than hostδ13C at all depths. Mean colony host and symbiontδ15N differed by up to 3.7‰ at shallow depths and converged at deeper depths. These results suggest that both heterotrophy and autotrophy remained integral to colony survival across depth. The increasing similarity between host and symbiontδ15N at deeper depths suggests that nitrogen is more efficiently shared between mesophotic coral hosts and their algal symbionts to sustain autotrophy. Isotopic trends across depth did not generally vary by host species or algal haplotype, suggesting that photosynthesis remains essential toLeptoserissurvival and growth despite low light availability in the mesophotic zone.more » « less
-
Surveys of Hawaiian macroalgae over the past 15 years have yielded numerous specimens representing species new to science. Calliblepharis yasutakei sp. nov. is here described based on a plant collected at a depth of 98 m from Kapou, Papahânaumokuâkea Marine National Monument, Hawaiʻi. Phylogenetic analyses of three molecular markers (COI, rbcL, and SSU) and analyses of morphological features were used to describe the new species in the family Cystocloniaceae. Calliblepharis yasutakei sp. nov. grouped with C. fimbriata, C. rammediorum, C. occidentalis and C. jolyi in a clade with full support for the rbcL analysis, representing a distinct lineage within the genus. Phylogenetic and vegetative morphological comparisons demonstrated that the new Hawaiian species is most closely related to C. rammediorum from Israel (rbcL similarity of 96.3%), although no female reproductive structures were found to allow a more comprehensive comparison. In order to determine whether C. yasutakei represents the first confirmed report of the genus Calliblepharis in the Hawaiian Islands, phylogenetic and morphological analysis of the Hawaiian Hypnea saidana (=Calliblepharis saidana) specimen accessioned at the Bernice P. Bishop Museum was performed. These analyses demonstrated that this specimen belongs to a new species in the genus Hypnea, which is here described as H. tsudae sp. nov. C. yasutakei, in addition to being a new species, is also reported as the first confirmed record of the genus Calliblepharis in the Hawaiian archipelago, and the description of H. tsudae brings the number of species for this genus in Hawaiʻi to eight.more » « less
-
Two genera of the Rhodymeniales, Halopeltis and Leptofauchea, are here reported for the first time from the Hawaiian Islands and represent the deepest records for both genera. Molecular phylogenetic analyses of cytochrome oxidase subunit I (COI), rbcL, and large subunit ribosomal DNA (LSU) sequences for Hawaiian specimens of Leptofauchea revealed one well-supported clade of Hawaiian specimens and three additional lineages. One of these clades is described here as Leptofauchea huawelau sp. nov., and is thus far known only from mesophotic depths at Penguin Bank in the Main Hawaiian Islands. L. huawelau sp. nov. is up to 21 cm, and is the largest known species. An additional lineage identified in the LSU and rbcL analyses corresponds to the recently described L. lucida from Western Australia, and is a new record for Hawai‘i. Hawaiian Halopeltis formed a well-supported clade along with H. adnata from Korea, the recently described H. tanakae from mesophotic depths in Japan, and H. willisii from North Carolina, and is here described as Halopeltis nuahilihilia sp. nov. H. nuahilihilia sp. nov. has a distinctive morphology of narrow vegetative axes that harbor constrictions along their length. The current distribution of H. nuahilihilia includes mesophotic depths around W. Maui, W. Moloka‘i, and the island of Hawai‘i in the Main Hawaiian Islands. Few reproductive characters were observed because of the small number of specimens available; however, both species are distinct based on phylogeny and morphology. These descriptions further emphasize the Hawaiian mesophotic zone as a location harboring many undescribed species of marine macroalgae.more » « less
-
null (Ed.)Small red algal morphologically variable blades have been extensively collected from Hawaiian reefs, but for many specimens their taxonomy remains poorly understood. In surveys of the Papahānaumokuākea Marine National Monument (PMNM) and Main Hawaiian Islands (MHI), we discovered two taxa of undescribed small (< 5 cm) red blades that matched the genera Psaromenia and Meredithia, based on morphology and molecular analyses. Neither genus has been previously recorded in the Hawaiian Islands, and neither group of specimens matched currently described species in these two genera. Accordingly, these specimens are described here as new species within the family Kallymeniaceae. Psaromenia laulamaula sp. nov., exclusively found at mesophotic depths (83–94 m) in PMNM, is easily distinguished from other members of the genus by its comparatively large, procarpic carpogonial branch system and solitary obovate pink-tomagenta blades. Conversely, Meredithia hawaiiensis sp. nov., occurring in both shallow (0–17 m) and mesophotic depths (55 m), has high morphological plasticity, with characters that overlap with other Meredithia species, and can only be distinguished based on DNA sequences. This study provides additional evidence of the extent of diversity in the Kallymeniaceae that is poorly characterized from mesophotic depths and provides further evidence that members of the macroalgal flora contain overlooked biodiversity.more » « less
An official website of the United States government
